当前位置:首页 > 数据库 > 正文

数据库系统的发展趋势

⒈数据库的发展趋势和发展前景

数据库技术的发展趋势:

根据数据库应用及多家分析机构的评估,数据库技术发展将以应用为导向,面向业务服务,并与计算机网络和工智能等技术结合,为新型应用提供多种支。

(1)云数据库和混合数据快速发展

云数据库(CloudDatabase)简称为云库,是在云计算环境中部署和虚拟化的数据库。 将各种关系型数据库看成一系列简单的二维表,并基于简化版本的SQL或访问对象进行作。 使传统关系型数据库通过提交一个有效地链接字符串即可加入云数据库,云数据库可解决数据集中更广泛的异地资源共享问题。

(2)数据集成与数据仓库

数据仓库(DataWarehouse)是面向主题、集成、相对稳定、反映历史变化的数据集合,是决策支系统和联机分析应用数据源的结构化数据环境。 主要侧重对机构历史数据的综合分析利用,找出对企业发展有价值的信息,以提供决策支,帮助提高效益。 其特征是面向主题、集成性、稳定性和时变性。 新一代数据库使数据集成和数据仓库的实施更简单。 数据应用逐步过渡到数据服务,开始注重处理:关系型与非关系型数据的融合、分类、际化多语言数据。

(3)主数据管理和商务智能

在企机构内部业务应用整合和系统互联中,许多机构具有相同业务语义的数据多次反复定义和存储,导致数据大量冗余成为IT环境发展的障碍,为了有效使用和管理这些数据,主数据管理已经成为一个新的热点。

商务智能(Business)是指利用数据仓库及数据掘技术对业务数据分析处理并提供决策信息和报告,促进企业利用现代信息技术收集、管理和分析商务数据,改善决策水平,提升绩效,增强综合竞争力的智慧和能力。 是企业利用现代信息技术收集、管理和分析商务数据和信息,创造和累计商务知识和见解,改善商务决策水平,采取有效的商务行动,完善各种商务流程,提升各方面商务绩效,增强综合竞争力的智慧和能力。 融合了先进信息技术与创新管理理念的结合体,集成企业内外的数据,加工并从中提取能够创造商业价值的信息,面向企业战略并服务于管理层。

(4)“大数据”促进新型数据库

进入“大数据时代”,大数据量、高并发、分布式和实时性的需求,由于传统的数据库技术的数据模型和预定义的作模式,时常难以满足实际需求,致使新型数据库在大数据的场景下,将取代传统数据库成为主导。

(5)基于网络的自动化管理

网络数据库应用系统的广泛应用,使数据库管理更加自动化。 如网购、网银等系统,从企业级Enterprise-class到世界级World-class的转变,提供更多基于Internet环境的管理工具,完成数据库管理网络化。 应用程序编程接口API(Application)更开放,基于浏览器端技术的管理套件,便于分布远程管理。

(6)PHP将促进数据库产品应用

随着新一代Web技术的广泛应用,在.NET和Java成为数据应用的主体开发平台后,很多厂商为了争取场在新版本数据库产品推出后,提供面向超级文本预处理语言PHP(Hypertext)的专用驱动和应用。

(7)数据库将与业务语义的数据融合

数据库将更广泛地为用于“信息服务”。 对新一代基于AJAX、MashUp、SNS等技术的创新应用,数据从集中于逻辑中心数据库,改为分布网络,为了给予技术支,数据聚集及基于业务语义的数据融合也成为数据库发展的方向,不仅在商务智能域不断加强对服务应用的支,而且注重加强数据集成服务。

⒉数据库名词解释?

数据库的概念:

数据库(Database)是按照数据结构来组织、存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和场的发展,特别是二十世纪九十年代以后,

数据管理不再仅仅是存储和管理数据,而转变成用户所需要的各种数据管理的方式。 数据库有很多种类型,从最简单的存储有各种数据的表格到能够进行海量数据存储的大型数据库系统都在各个方面得到了广泛的应用。

在信息化社会,充分有效地管理和利用各类信息资源,是进行科学研究和决策管理的前提条件。 数据库技术是管理信息系统、办公自动化系统、决策支系统等各类信息系统的核心部分,是进行科学研究和决策管理的重要技术手段。

数据库的定义:

定义1:数据库(Database)是按照数据结构来组织、存储和管理数据的建立在计算机存储设备上的仓库。

简单来说是本身可为电子化的文件柜——存储电子文件的处所,用户可以对文件中的数据进行新增、截取、更新、删除等作。

在经济管理的日常工作中,常常需要把某些相关的数据放进这样的“仓库”,并根据管理的需要进行相应的处理。

例如,企业或单位的事部门常常要把本单位职工的基本情况(职工号、姓名、年龄、性别、籍贯、工资、简历等)存放在表中,这张表就可以看成是一个数据库。 有了这个\"数据仓库\"我们就可以根据需要随时查询某职工的基本情况,也可以查询工资在某个范围内的职工数等等。 这些工作如果都能在计算机上自动进行,那我们的事管理就可以达到极高的水平。 此外,在财务管理、仓库管理、生产管理中也需要建立众多的这种\"数据库\",使其可以利用计算机实现财务、仓库、生产的自动化管理。

定义2:

严格来说,数据库是期储存在计算机内、有组织的、可共享的数据集合。 数据库中的数据指的是以一定的数据模型组织、描述和储存在一起、具有尽可能小的冗余度、较高的数据独立性和易扩展性的特点并可在一定范围内为多个用户共享。

这种数据集合具有如下特点:尽可能不重复,以最优方式为某个特定组织的多种应用服务,其数据结构独立于使用它的应用程序,对数据的增、删、改、查由统一软件进行管理和控。 从发展的历史看,数据库是数据管理的高级阶段,它是由文件管理系统发展起来的。 [1][2]

数据库的处理系统:

数据库是一个单位或是一个应用域的通用数据处理系统,它存储的是属于企业和部门、团体和个的有关数据的集合。 数据库中的数据是从全观点出发建立的,按一定的数据模型进行组织、描述和存储。 其结构基于数据间的自然联系,从而可提供一切必要的存取路径,且数据不再对某一应用,而是面向全组织,具有整体的结构化特征。

数据库中的数据是为众多用户所共享其信息而建立的,已经摆脱了具体程序的限和约。 不同的用户可以按各自的用法使用数据库中的数据;多个用户可以同时共享数据库中的数据资源,即不同的用户可以同时存取数据库中的同一个数据。 数据共享性不仅满足了各用户对信息的要求,同时也满足了各用户之间信息通信的要求。

数据库的基本结构:

数据库的基本结构分三个层次,反映了观察数据库的三种不同角度。

以内模式为框架所组成的数据库叫做物理数据库;以概念模式为框架所组成的数据叫概念数据库;以外模式为框架所组成的数据库叫用户数据库。

⑴物理数据层。

它是数据库的最内层,是物理存贮设备上实际存储的数据的集合。 这些数据是原始数据,是用户加工的对象,由内部模式描述的指令作处理的位串、字符和字组成。

⑵概念数据层。

它是数据库的中间一层,是数据库的整体逻辑表示。 指出了每个数据的逻辑定义及数据间的逻辑联系,是存贮记录的集合。 它所涉及的是数据库所有对象的逻辑关系,而不是它们的物理情况,是数据库管理员概念下的数据库。

⑶用户数据层。

它是用户所看到和使用的数据库,表示了一个或一些特定用户使用的数据集合,即逻辑记录的集合。

数据库不同层次之间的联系是通过映射进行转换的。

数据库的主要特点:

⑴实现数据共享

数据共享包含所有用户可同时存取数据库中的数据,也包括用户可以用各种方式通过接口使用数据库,并提供数据共享。

⑵减少数据的冗余度

同文件系统相比,由于数据库实现了数据共享,从而避免了用户各自建立应用文件。 减少了大量重复数据,减少了数据冗余,维护了数据的一致性。

⑶数据的独立性

数据的独立性包括逻辑独立性(数据库中数据库的逻辑结构和应用程序相互独立)和物理独立性(数据物理结构的变化不影响数据的逻辑结构)。

⑷数据实现集中控

文件管理方式中,数据处于一种分散的状态,不同的用户或同一用户在不同处理中其文件之间毫无关系。 利用数据库可对数据进行集中控和管理,并通过数据模型表示各种数据的组织以及数据间的联系。

⑸数据一致性和可维护性,以确保数据的安全性和可靠性

主要包括:①安全性控:以防止数据丢失、错误更新和越权使用;②完整性控:保证数据的正确性、有效性和相容性;③并发控:使在同一时间周期内,允许对数据实现多路存取,又能防止用户之间的不正常交互作用。

⑹故障恢复

由数据库管理系统提供一套方法,可及时故障和修复故障,从而防止数据破坏。 数据库系统能尽快恢复数据库系统运行时出现的故障,可能是物理上或是逻辑上的错误。 比如对系统的误作造成的数据错误等。

数据库的数据种类:

数据库通常分为层次式数据库、网络式数据库和关系式数据库三种。 而不同的数据库是按不同的数据结构来联系和组织的。

1.数据结构模型

⑴数据结构

所谓数据结构是指数据的组织形式或数据之间的联系。

如果用D表示数据,用R表示数据对象之间存在的关系集合,则将DS=(D,R)称为数据结构。

例如,设有一个号码簿,它记录了n个的名字和相应的号码。 为了方便地查找某的号码,将名和号码按字典顺序排列,并在名字的后面跟随着对应的号码。 这样,若要查找某的号码(假定他的名字的第一个字母是Y),那么只须查找以Y开的那些名字就可以了。 该例中,数据的集合D就是名和号码,它们之间的联系R就是按字典顺序的排列,其相应的数据结构就是DS=(D,R),即一个数组。

⑵数据结构类型

数据结构又分为数据的逻辑结构和数据的物理结构。

数据的逻辑结构是从逻辑的角度(即数据间的联系和组织方式)来观察数据,分析数据,与数据的存储位置无关;数据的物理结构是指数据在计算机中存放的结构,即数据的逻辑结构在计算机中的实现形式,所以物理结构也称为存储结构。

这里只研究数据的逻辑结构,并将反映和实现数据联系的方法称为数据模型。

比较流行的数据模型有三种,即按图论理论建立的层次结构模型和网状结构模型以及按关系理论建立的关系结构模型。

2.层次、网状和关系数据库系统

⑴层次结构模型

层次结构模型实质上是一种有根结点的定向有序树(在数学中\"树\"定义为一个无回的连通图)。 下图是一个高等学校的组织结构图。 这个组织结构图像一棵树,校部就是树根(称为根结点),各系、专业、教师、学生等为枝点(称为结点),树根与枝点之间的联系称为边,树根与边之比为1:N,即树根只有一个,树枝有N个。

按照层次模型建立的数据库系统称为层次模型数据库系统。 IMS(InformationManagementSystem)是其典型代表。

⑵网状结构模型

按照网状数据结构建立的数据库系统称为网状数据库系统,其典型代表是DBTG(DatabaseTaskGroup)。 用数学方法可将网状数据结构转化为层次数据结构。

⑶关系结构模型

关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。 例如某单位的职工关系就是一个二元关系。

由关系数据结构组成的数据库系统称为关系数据库系统。

在关系数据库中,对数据的作几乎全部建立在一个或多个关系表格上,通过对这些关系表格的分类、合并、连接或选取等运算来实现数据的管理。

dBASEⅡ就是这类数据库管理系统的典型代表。 对于一个实际的应用问题(如事管理问题),有时需要多个关系才能实现。 用dBASEⅡ建立起来的一个关系称为一个数据库(或称数据库文件),而把对应多个关系建立起来的多个数据库称为数据库系统。 dBASEⅡ的另一个重要功能是通过建立命令文件来实现对数据库的使用和管理,对于一个数据库系统相应的命令序列文件,称为该数据库的应用系统。

因此,可以概括地说,一个关系称为一个数据库,若干个数据库可以构成一个数据库系统。 数据库系统可以派生出各种不同类型的辅助文件和建立它的应用系统。

数据库的发展简史:

1数据库的技术发展

使用计算机后,随着数据处理量的增,产生了数据管理技术。 数据管理技术的发展与计算机硬件(主要是外部存储器)系统软件及计算机应用的范围有着密切的联系。 数据管理技术的发展经历了以下四个阶段:工管理阶段、文件系统阶段、数据库阶段和高级数据库技术阶段。

2数据管理的诞生

数据库的历史可以追溯到五十年前,那时的数据管理非常简单。 通过大量的分类、比较和表格绘的机器运行数百万穿孔卡片来进行数据的处理,其运行结果在纸上印出来或者成新的穿孔卡片。 而数据管理就是对所有这些穿孔卡片进行物理的储存和处理。 然而,1950年雷明顿兰德公司(RemingtonRandInc)的一种叫做UnivacI的计算机推出了一种一秒钟可以输入数百条记录的磁带驱动器,从而引发了数据管理的革命。 1956年IBM生产出第一个磁盘驱动器——theModel305RAMAC。 此驱动器有50个盘片,每个盘片直径是2英尺,可以储存5MB的数据。 使用磁盘最大的好处是可以随机存取数据,而穿孔卡片和磁带只能顺序存取数据。

1951:Univac系统使用磁带和穿孔卡片作为数据存储。

数据库系统的萌芽出现于二十世纪60年代。 当时计算机开始广泛地应用于数据管理,对数据的共享提出了越来越高的要求。 传统的文件系统已经不能满足们的需要,能够统一管理和共享数据的数据库管理系统(DBMS)应运而生。 数据模型是数据库系统的核心和基础,各种DBMS软件都是基于某种数据模型的。 所以通常也按照数据模型的特点将传统数据库系统分成网状数据库、层次数据库和关系数据库三类。

最早出现的网状DBMS,是美通用电气公司Bachman等在1961年开发的IDS(IntegratedDataStore)。 1964年通用电气公司(GeneralElectricCo.)的CharlesBachman成功地开发出世界上第一个网状DBMS也即第一个数据库管理系统——集成数据存储(IntegratedDataStoreIDS),定了网状数据库的基础,并在当时得到了广泛的发行和应用。 IDS具有数据模式和日志的特征,但它只能在GE主机上运行,并且数据库只有一个文件,数据库所有的表必须通过手工编码生成。 之后,通用电气公司一个客户——BFGoodrichChemical公司最终不得不重写了整个系统,并将重写后的系统命名为集成数据管理系统(IDMS)。

网状数据库模型对于层次和非层次结构的事物都能比较自然的模拟,在关系数据库出现之前网状DBMS要比层次DBMS用得普遍。 在数据库发展史上,网状数据库占有重要地位。

层次型DBMS是紧随网络型数据库而出现的,最著名最典型的层次数据库系统是IBM公司在1968年开发的IMS(InformationManagementSystem),一种适合其主机的层次数据库。 这是IBM公司研的最早的大型数据库系统程序产品。 从60年代末产生起,如今已经发展到IMSV6,提供群集、N路数据共享、消息队列共享等先进特性的支。 这个具有30年历史的数据库产品在如今的WWW应用连接、商务智能应用中扮演着新的角色。

1973年Cullinane公司(也就是后来的Cullinet软件公司),开始出售Goodrich公司的IDMS改进版本,并且逐渐成为当时世界上最大的软件公司。

数据库的关系由来:

网状数据库和层次数据库已经很好地解决了数据的集中和共享问题,但是在数据独立性和抽象级别上仍有很大欠缺。 用户在对这两种数据库进行存取时,仍然需要明确数据的存储结构,指出存取路径。 而后来出现的关系数据库较好地解决了这些问题。

1970年,IBM的研究员E.F.Codd博士在刊物《CommunicationoftheACM》上发表了一篇名为“ARelationalModelofDataforLargeSharedDataBanks”的论文,提出了关系模型的概念,定了关系模型的理论基础。 尽管之前在1968年Childs已经提出了面向集合的模型,然而这篇论文普遍认为是数据库系统历史上具有划时代意义的里程碑。 Codd的心愿是为数据库建立一个优美的数据模型。 后来Codd又陆续发表多篇文章,论述了范式理论和衡量关系系统的12条标准,用数学理论定了关系数据库的基础。 关系模型有严格的数学基础,抽象级别比较高,而且简单清晰,便于理解和使用。 但是当时也有认为关系模型是理想化的数据模型,用来实现DBMS是不现实的,尤其担心关系数据库的性能难以接受,更有其为当时正在进行中的网状数据库规范化工作的严重威胁。 为了促进对问题的理解,1974年ACM牵组织了一次研讨会,会上开展了一场分别以Codd和Bachman为首的支和反对关系数据库两派之间的辩论。 这次著名的辩论推动了关系数据库的发展,使其最终成为现代数据库产品的主流。

1969年EdgarF.“Ted”Codd发明了关系数据库。

1970年关系模型建立之后,IBM公司在SanJose实验室增加了更多的研究员研究这个项目,这个项目就是著名的SystemR。 其目标是论证一个全功能关系DBMS的可行性。 该项目结束于1979年,完成了第一个实现SQL的DBMS。 然而IBM对IMS的承诺阻止了SystemR的投产,一直到1980年SystemR才作为一个产品正式推向场。 IBM产品化步伐缓慢的三个原因:IBM重信誉,重质量,尽量减少故障;IBM是个大公司,僚体系庞大,IBM内部已经有层次数据库产品,相关员不积极,甚至反对。

然而同时,1973年加州大学伯克利分校的MichaelStonebraker和EugeneWong利用SystemR已发布的信息开始开发自己的关系数据库系统Ingres。 他们开发的Ingres项目最后由Oracle公司、Ingres公司以及硅谷的其他厂商所商品化。 后来,SystemR和Ingres系统双双获得ACM的1988年“软件系统”。

1976年霍尼韦尔公司(Honeywell)开发了第一个商用关系数据库系统——MulticsRelationalDataStore。 关系型数据库系统以关系代数为坚实的理论基础,经过几十年的发展和实际应用,技术越来越成熟和完善。 其代表产品有Oracle、IBM公司的DB2、微软公司的MSSQLServer以及Informix、ADABASD等等。

数据库的发展阶段:

数据库发展阶段大致划分为如下的几个阶段:工管理阶段、文件系统阶段、数据库系统阶段、高级数据库阶段。

工管理阶段

20世纪50年代中期之前,计算机的软硬件均不完善。 硬件存储设备只有磁带、卡片和纸带,软件方面还没有作系统,当时的计算机主要用于科学计算。 这个阶段由于还没有软件系统对数据进行管理,程序员在程序中不仅要规定数据的逻辑结构,还要设计其物理结构,包括存储结构、存取方法、输入输出方式等。 当数据的物理组织或存储设备改变时,用户程序就必须重新编。 由于数据的组织面向应用,不同的计算程序之间不能共享数据,使得不同的应用之间存在大量的重复数据,很难维护应用程序之间数据的一致性。

这一阶段的主要特征可归纳为如下几点:

(1)计算机中没有支数据管理的软件,计算机系统不提供对用户数据的管理功能,应用程序只包含自己要用到的全部数据。 用户编程序,必须全面考虑好相关的数据,包括数据的定义、存储结构以即存取方法等。 程序和数据是一个不可分的整体。 数据脱离了程序极具无任何存在的价值,数据无独立性。

(2)数据不能共享。 不同的程序均有各自的数据,这些数据对不同的程序通常是不相同的,不可共享;即使不同的程序使用了相同的一组数据,这些数据也不能共享,程序中仍然需要各自加入这组数据,哪个部分都不能略。 基于这种数据的不可共享性,必然导致程序与程序之间存在大量的重复数据,浪费存储空间。

(3)不能单独保存数据。 在程序中要规定数据的逻辑结构和物理结构,数据与程序不独立。 基于数据与程序是一个整体,数据只为本程序所使用,数据只有与相应的程序一起保存才有价值,否则毫无用处。 所以,所有程序的数据不单独保存。 数据处理的方式是批处理。

文件系统阶段:

这一阶段的主要标志是计算机中有了专门管理数据库的软件——作系统(文件管理)。

上世纪50年代中期到60年代中期,由于计算机大容量直接存储设备如硬盘、磁鼓的出现,

推动了软件技术的发展,软件的域出现了作系统和高级软件,作系统中的文件系统是专门管理外存的数据管理软件,作系统为用户使用文件提供了友好界面。 作系统的出现标志着数据管理步入一个新的阶段。 在文件系统阶段,数据以文件为单位存储在外存,且由作系统统一管理,文件是作系统管理的重要资源。

文件系统阶段的数据管理具有一下几个特点:

优点

(1)数据以“文件”形式可期保存在外部存储器的磁盘上。 由于计算机的应用转向信息管理,因此对文件要进行大量的查询、修改和插入等作。

(2)数据的逻辑结构与物理结构有了区别,程序和数据分离,使数据与程序有了一定的独立性,但比较简单。 数据的逻辑结构是指呈现在用户面前的数据结构形式。 数据的物理结构是指数据在计算机存储设备上的实际存储结构。 程度与数据之间具有“设备独立性”,即程序只需用文件名就可与数据交道,不必关心数据的物理位置。 由作系统的文件系统提供存取方法(读/写)。

(3)文件组织已多样化。 有索引文件、链接文件和直接存取文件等。 但文件之间相互独立、缺乏联系。 数据之间的联系需要通过程序去构造。

(4)数据不再属于某个特定的程序,可以重复使用,即数据面向应用。 但是文件结构的设计仍是基于特定的用途,程序基于特定的物理结构和存取方法,因此程度与数据结构之间的依赖关系并未根本改变。

(5)用户的程序与数据可分别存放在外存储器上,各个应用程序可以共享一组数据,实现了以文件为单位的数据共享文件系统。

(6)对数据的作以记录为单位。 这是由于文件中只存储数据,不存储文件记录的结构描述信息。 文件的建立、存取、查询、插入、删除、修改等作,都要用程序来实现。

(7)数据处理方式有批处理,也有联机实时处理。

缺点

文件系统对计算机数据管理能力的提高虽然起了很大的作用,但随着数据管理规模的扩大,数据量急剧增加,文价系统显露出一些缺陷,问题表现在:

(1)数据文件是为了满足特定业务域某一部门的专门需要而设计,数据和程序相互依赖,数据缺乏足够的独立性。

(2)数据没有集中管理的机,其安全性和完整性无法保障,数据维护业务仍然由应用程序来承担;

(3)数据的组织仍然是面向程序,数据与程序的依赖性强,数据的逻辑结构不能方便地修改和扩充,数据逻辑结构的每一点微小改变都会影响到应用程序;而且文件之间的缺乏联系,因而它们不能反映现实世界中事物之间的联系,加上作系统不负责维护文件之间的联系,信息造成每个应用程序都有相对应的文件。 如果文件之间有上的联系,那也只能由应用程序去处理,有可能同样的数据在多个文件中重复储存。 这两者造成了大量的数据冗余。

(4)对现有数据文件不易扩充,不易移植,难以通过增、删数据项来适应新的应用要求。

数据库系统阶段:

20世纪60年代后期,随着计算机在数据管理域的普遍应用,们对数据管理技术提出了更高的要求:希望面向企业或部门,以数据为中心组织数据,减少数据的冗余,提供更高的数据共享能力,同时要求程序和数据具有较高的独立性,当数据的逻辑结构改变时,不涉及数据的物理结构,也不影响应用程序,以降低应用程序研与维护的费用。 数据库技术正是在这样一个应用需求的基础上发展起来的。

概括起来,数据库系统阶段的数据管理具有以下几个特点:

(1)采用数据模型表示复杂的数据结构。 数据模型不仅描述数据本身的特征,还要描述数据之间的联系,这种联系通过所有存取路径。 通过所有存储路径表示自然的数据联系是数据库与传统文件的根本区别。 这样,数据不再面向特定的某个或多个应用,而是面对整个应用系统。 如面向企业或部门,以数据为中心组织数据,形成综合性的数据库,为各应用共享。

(2)由于面对整个应用系统使得,数据冗余小,易修改、易扩充,实现了数据贡献。 不同的应用程序根据处理要求,从数据库中获取需要的数据,这样就减少了数据的重复存储,也便于增加新的数据结构,便于维护数据的一致性。

(3)对数据进行统一管理和控,提供了数据的安全性、完整性、以及并发控。

(4)程序和数据有较高的独立性。 数据的逻辑结构与物理结构之间的差别可以很大,用户以简单的逻辑结构作数据而无须考虑数据的物理结构。

(5)具有良好的用户接口,用户可方便地开发和使用数据库。

从文件系统发展到数据库系统,这在信息域中具有里程碑的意义。 在文件系统阶段,们在信息处理中关注的中心问题是系统功能的设计,因此程序设计占主导地位;而在数据库方式下,数据开始占据了中心位置,数据的结构设计成为信息系统首先关心的问题,而应用程序则以既定的数据结构为基础进行设计。

数据库发展趋势:

随着信息管理的不断扩展,出现了丰富多样的数据模型(层次模型,网状模型,关系模型,面向对象模型,半结构化模型等),新技术也层出不穷(数据流,Web数据管理,数据掘等)。 每隔几年,际上一些资深的数据库专家就会聚集一堂,探讨数据库研究现状,存在的问题和未来需要关注的新技术焦点。 过去已有的几个类似报告包括:1989年FutureDirectionsinDBMSResearch-TheLagunaBeachParticipants;1990年DatabaseSystems:AchievementsandOpportunities;1991年W.H.Inmon发表的《构建数据仓库》;1995年Database。

常见数据库厂商:

1.SQLServer

只能在windows上运行,没有丝毫的开放性,作系统的系统的稳定对数据库是十分重要的。 Windows9X系列产品是偏重于桌面应用,NTserver只适合中小型企业。 而且wi